374 research outputs found

    Experimental verification of theoretical approaches for radial gravity currents draining from an edge

    Get PDF
    We present an experimental study of inertial gravity currents (GCs) propagating in a cylindrical wedge under different drainage directions (inward/outward), lock-release (full/partial gatewidth) and geometry (annulus/full cylinder). We investigate the following combinations representative of operational conditions for dam-break flows: (i) inward drainage, annular reservoir, full gate; (ii) outward drainage, full reservoir, full gate; and (iii) outward drainage, full reservoir, partial gate. A single-layer shallow-water (SW) model is used for modelling the first two cases, while a box model interprets the third case; the results of these approximations are referred to as "theoretical". We performed a first series of experiments with water as ambient fluid and brine as intruding fluid, measuring the time evolution of the volume in the reservoir and the velocity profiles in several sections; in a second series, airwas the ambient andwaterwas the intruding fluid. Careful measurements, accompanied by comparisons with the theoretical predictions, were performed for the behaviour of the interface, radial velocity and, most important, the volume decay V(t)/V(0). In general, there is good agreement: the theoretical volume decay is more rapid than the measured one, but the discrepancies are a few percent and the agreement improves as the Reynolds number increases. Velocity measurements show a trend correctly reproduced by the SWmodel, although often a delay is observed and an over- or under-estimation of the peak values. Some experiments were conducted to verify the role of inconsistencies between experimental set-up and model assumptions, considering, for example, the presence or absence of a top lid, wedge angle much less than 2p, suppression of the viscous corner at the centre, reduction of disturbances in the dynamics of the ambient fluid: all these effects resulted in negligible impacts on the overall error. These experiments provide corroboration to the simple models used for capturing radial drainage flows, and also elucidate some effects (like oscillations of the radial flux) that are beyond the resolution of the models. This holds also for partial width lock-release, where axial symmetry is lost

    Experimental verification of theoretical approaches for radial gravity currents draining from an edge

    Get PDF
    We present an experimental study of inertial gravity currents (GCs) propagating in a cylindrical wedge under different drainage directions (inward/outward), lock-release (full/partial gate width) and geometry (annulus/full cylinder). We investigate the following combinations representative of operational conditions for dam-break flows: (i) inward drainage, annular reservoir, full gate; (ii) outward drainage, full reservoir, full gate; and (iii) outward drainage, full reservoir, partial gate. A single-layer shallow-water (SW) model is used for modelling the first two cases, while a box model interprets the third case; the results of these approximations are referred to as “theoretical”. We performed a first series of experiments with water as ambient fluid and brine as intruding fluid, measuring the time evolution of the volume in the reservoir and the velocity profiles in several sections; in a second series, air was the ambient and water was the intruding fluid. Careful measurements, accompanied by comparisons with the theoretical predictions, were performed for the behaviour of the interface, radial velocity and, most important, the volume decay V(t) / V(0). In general, there is good agreement: the theoretical volume decay is more rapid than the measured one, but the discrepancies are a few percent and the agreement improves as the Reynolds number increases. Velocity measurements show a trend correctly reproduced by the SW model, although often a delay is observed and an over- or under-estimation of the peak values. Some experiments were conducted to verify the role of inconsistencies between experimental set-up and model assumptions, considering, for example, the presence or absence of a top lid, wedge angle much less than 2 π, suppression of the viscous corner at the centre, reduction of disturbances in the dynamics of the ambient fluid: all these effects resulted in negligible impacts on the overall error. These experiments provide corroboration to the simple models used for capturing radial drainage flows, and also elucidate some effects (like oscillations of the radial flux) that are beyond the resolution of the models. This holds also for partial width lock-release, where axial symmetry is lost

    Localized pigmented villonodular synovitis of the anterior cruciate ligament of the knee: an exceptional presentation of a rare disease with neoplastic and inflammatory features.

    Get PDF
    Pigmented villonodular synovitis (PVNS) is a rare condition, most commonly involving the knee joint. PVNS is locally aggressive and can invade and destroy surrounding soft tissue and bone, leading to anatomical and functional deterioration of the affected joint. Localized PVNS is an unusual presentation of the disease, generally consisting of a nodular lesion protruding into the articular cavity. Localized PVNS of the knee can mimic other joint disorders which may pose a challenge for a correct diagnosis. Given the locally aggressive behavior of PVNS, prompt identification and excision of the lesion are instrumental to avoid complications. Here, we report a rare case of localized cystic PVNS involving the anterior cruciate ligament of the knee in a 32-year-old woman with persistent knee pain, in whom magnetic resonance imaging was inconclusive. The diagnosis was achieved via arthroscopy and histology. We also present a concise review of the literature on this pathological entity as well as a discussion on the differential diagnosis between localized PVNS and other intra-articular cystic lesions

    Gravity-driven flow of Herschel--Bulkley fluid in a fracture and in a 2D porous medium

    Get PDF
    New analytical models are introduced to describe the motion of a Herschel-Bulkley fluid slumping under gravity in a narrow fracture and in a porous medium. A useful self{similar solution can be derived for a fluid injection rate that scales as t; an expansion technique is adopted for a generic injection rate which is power{law in time. Experiments in a Hele-Shaw cell and in a narrow channel filled with glass ballotini confirm the theoretical model within the experimental uncertainty

    Solving Nonlinear Parabolic Equations by a Strongly Implicit Finite-Difference Scheme

    Full text link
    We discuss the numerical solution of nonlinear parabolic partial differential equations, exhibiting finite speed of propagation, via a strongly implicit finite-difference scheme with formal truncation error O[(Δx)2+(Δt)2]\mathcal{O}\left[(\Delta x)^2 + (\Delta t)^2 \right]. Our application of interest is the spreading of viscous gravity currents in the study of which these type of differential equations arise. Viscous gravity currents are low Reynolds number (viscous forces dominate inertial forces) flow phenomena in which a dense, viscous fluid displaces a lighter (usually immiscible) fluid. The fluids may be confined by the sidewalls of a channel or propagate in an unconfined two-dimensional (or axisymmetric three-dimensional) geometry. Under the lubrication approximation, the mathematical description of the spreading of these fluids reduces to solving the so-called thin-film equation for the current's shape h(x,t)h(x,t). To solve such nonlinear parabolic equations we propose a finite-difference scheme based on the Crank--Nicolson idea. We implement the scheme for problems involving a single spatial coordinate (i.e., two-dimensional, axisymmetric or spherically-symmetric three-dimensional currents) on an equispaced but staggered grid. We benchmark the scheme against analytical solutions and highlight its strong numerical stability by specifically considering the spreading of non-Newtonian power-law fluids in a variable-width confined channel-like geometry (a "Hele-Shaw cell") subject to a given mass conservation/balance constraint. We show that this constraint can be implemented by re-expressing it as nonlinear flux boundary conditions on the domain's endpoints. Then, we show numerically that the scheme achieves its full second-order accuracy in space and time. We also highlight through numerical simulations how the proposed scheme accurately respects the mass conservation/balance constraint.Comment: 36 pages, 9 figures, Springer book class; v2 includes improvements and corrections; to appear as a contribution in "Applied Wave Mathematics II

    The risk stratification of adverse neonatal outcomes in women with gestational diabetes (STRONG) study

    Get PDF
    Aims: To assess the risk of adverse neonatal outcomes in women with gestational diabetes (GDM) by identifying subgroups of women at higher risk to recognize the characteristics most associated with an excess of risk. Methods: Observational, retrospective, multicenter study involving consecutive women with GDM. To identify distinct and homogeneous subgroups of women at a higher risk, the RECursive Partitioning and AMalgamation (RECPAM) method was used. Overall, 2736 pregnancies complicated by GDM were analyzed. The main outcome measure was the occurrence of adverse neonatal outcomes in pregnancies complicated by GDM. Results: Among study participants (median age 36.8 years, pre-gestational BMI 24.8 kg/m2), six miscarriages, one neonatal death, but no maternal death was recorded. The occurrence of the cumulative adverse outcome (OR 2.48, 95% CI 1.59–3.87), large for gestational age (OR 3.99, 95% CI 2.40–6.63), fetal malformation (OR 2.66, 95% CI 1.00–7.18), and respiratory distress (OR 4.33, 95% CI 1.33–14.12) was associated with previous macrosomia. Large for gestational age was also associated with obesity (OR 1.46, 95% CI 1.00–2.15). Small for gestational age was associated with first trimester glucose levels (OR 1.96, 95% CI 1.04–3.69). Neonatal hypoglycemia was associated with overweight (OR 1.52, 95% CI 1.02–2.27) and obesity (OR 1.62, 95% CI 1.04–2.51). The RECPAM analysis identified high-risk subgroups mainly characterized by high pre-pregnancy BMI (OR 1.68, 95% CI 1.21–2.33 for obese; OR 1.38 95% CI 1.03–1.87 for overweight). Conclusions: A deep investigation on the factors associated with adverse neonatal outcomes requires a risk stratification. In particular, great attention must be paid to the prevention and treatment of obesity

    Aspectos silviculturais.

    Get PDF
    Para o atendimento das demandas e fornecimento de madeira com a qualidade compatível ao produto desejado, deve-se planejar adequadamente as atividades envolvidas e os vários fatores considerados. No caso específico dos plantios florestais, os principais fatores que condicionam o sucesso do empreendimento são: a) finalidade do plantio (produto a ser obtido), b) escolha adequada da espécie/ material genético; c) adaptação do material genético às condições ambientais do local do plantio (?sítio?), d) nível de melhoramento genético da semente ou clone utilizado, e) conhecimento aprofundado sobre silvicultura e manejo da espécie selecionada, f) índice de produtividade de madeira, g) existência de mercado consumidor, h) plantio em raio econômico viável em relação ao preço de venda do produto obtido; i) contratação de profissional habilitado para realizar a elaboração e execução do projeto de viabilidade técnica e econômica do plantio e j) rentabilidade do plantio (Botelho, 2003; Higa; Higa, 2000). Dessa maneira, buscou-se apresentar neste capítulo as informações relacionadas aos aspectos silviculturais e de manejo de espécies pertencentes ao gênero Khaya
    corecore